[์‚ฝ์งˆ tip] matplotlib.imshow()

matplotlib.imshow()

์งˆ๋ฌธ์—์„œ ๋‚˜์™”์Šต๋‹ˆ๋‹ค.. ์™œ type ์„ ๋ณ€๊ฒฝํ•˜๋ฉด 255.0 ์œผ๋กœ ๋‚˜๋ˆ„์–ด ์ฃผ๋Š” ์ž‘์—…(normalize) ๊ฐ€ ํ•„์š”ํ•œ ๊ฒƒ์ผ๊นŒ์š”?

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

์ฝ”๋“œ๋กœ ์ง์ ‘ ๊ตฌํ˜„ํ–ˆ์„ ๋•Œ, โ€˜imshowโ€™๋ผ๋Š” ๋ฉ”์†Œ๋“œ๋Š” RGB data๋กœ float type์ผ ๋•Œ, [0, 1] / int type์ผ ๋•Œ, [0, 255] ๋ผ๋Š” ์กฐ๊ฑด์„ ๊ฐ€์งˆ ๋•Œ์—๋งŒ ์ œ๋Œ€๋กœ ๋œ ์ด๋ฏธ์ง€๋ฅผ ๋ณด์—ฌ์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค.

imshow๊ฐ€ matplotlib์—์„œ ๊ฐ€์ ธ์˜จ ๊ฒƒ์ธ๋ฐ,, ๋ณด๋‹ˆ๊นŒ matplotlib์˜ ํŠน์ง•์ธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

import sys
coco = COCO("../input/data/train.json")
image_id = coco.getImgIds(imgIds=0)
image_infos = coco.loadImgs(image_id)[0]
dataset_path_1 = '../input/data/'
images = cv2.imread(os.path.join(dataset_path_1, image_infos['file_name']))
plt.imshow(images)
#print(images)

Untitled

fig, ax = plt.subplots(1, 3, figsize=(15, 5), sharey=True)

images_1 = cv2.cvtColor(images, cv2.COLOR_BGR2RGB).astype(np.int32)
ax[0].imshow(images_1, aspect="auto")

images_2 = cv2.cvtColor(images, cv2.COLOR_BGR2RGB).astype(np.float32)
ax[1].imshow(images_2, aspect="auto")

images_3 = cv2.cvtColor(images, cv2.COLOR_BGR2RGB).astype(np.float32)
images_3 /= 255.0

ax[2].imshow(images_3, aspect="auto")

plt.show()

Untitled

ํƒœ๊ทธ:

์นดํ…Œ๊ณ ๋ฆฌ:

์—…๋ฐ์ดํŠธ: